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1 Introduction

OSLO, which stands for Open Source Loop Operator, is an attempt to create a
state-of-the-art, open source voice assistant that is entirely server-less. A virtual
assistant is defined as, for the purpose of this manuscript, a program which in-
teracts with the user in the way the user might interact with a human assistant
such that a., the assistant supports the user in accomplishing a task, or b. the
assistant accomplishes an assigned task autonomously. A voice assistant is a
virtual assistant which uses voice as the primary means of interaction. Contem-
porary examples of voice assistants include popular consumer products such as
Apple’s Siri or Amazon’s Alexa. However, these examples differ from OSLO in
that they are hosted - they do not run directly on the hardware purchased by
consumers, rather the vast majority of computation is done off-device on private
servers.

1.0.1 Author’s Note

It is important to note this is a preliminary document which records the jus-
tification and design of the agent. Some of the work contained within outlines
algorithms which are non-standard, either novel in content or previously un-
known to the author. As such they are not time-tested nor have they under-
gone sufficient review to be taken as anything other than experimental. Please
direct any productive questions, corrections, or comments to Aidan M. Gomez
at agom@bu.edu.

Between August of 2021 and September of 2022, funding and guidance for
this project were graciously provided through Boston University’s Spark! Tech-
nology Innovation Fellowship. Special thanks to Chase Maivald for his contri-
bution to the concatenative speech synthesis module.

1.1 Reasoning

Humanity generates a massive amount of data - in 2020 alone we read and
wrote over 64 zettabytes of information1, a figure which has only increased
since. A growing share of internet-enabled devices are ’things’, consumer devices
including washers, light bulbs, door locks, thermostats, and coffee machines.

As of 2020 there were about 15 billion of them2. They have become com-
monplace, most Americans own or simply make use of some form ”smart” (a
relative description that ceaselessly shifts in its definition) speaker, television,
or lighting system. These devices are oftentimes cheap and host services which
permit the user to control their appliances from anywhere. While this hosting
costs the company money, they do not charge the user in a ’subscription model’

1Taylor, P. (2023, August 22). Data Growth Worldwide 2010-2025. Statista.
https://www.statista.com/statistics/871513/worldwide-data-created/

2Vailshery, L. S. (2023, July 27). IOT connected devices worldwide 2019-2030. Statista.
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
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style for access. While there may be exceptions, companies like Roku are able to
sustain this business model because there is a substantial revenue stream to be
had from harvesting your information. The exchange is this: the user purchases
the device and the ’smart’ capabilities are paid for by the data generated by the
user. This is not the only cost the consumer incurs, however. So-called ’internet-
of-things’ (IoT) devices are notorious for exposing networks through outdated
firmware. The Mirai botnet made use of over 600,000 poorly maintained IoT
devices to DDoS servers for the popular video game ”Minecraft” before moving
on to critical DNS infrastructure. No matter how security conscious the user is,
no assurance can be made that ’things’ such as a smart toilet or doorbell will
not suddenly be co-opted by a bad actor, potentially as a staging-point for more
serious attacks or as a means to invade your privacy. Functionality can not be
guaranteed by smart appliance companies either. In April of 2022, major home
automation company Insteon shut down their servers3 rendering users unable
to do basic tasks like turn on their lights. Despite being able to communicate
over a local network, phoning home to a data center potentially thousands of
miles away was central to Insteon devices’ functionality.

1.2 Proposed Solution

By keeping everything local, OSLO subverts the server oriented status quo of
the virtual-assistant-home-automation market. In fact, OSLO does not seek
whatsoever to compete with aforementioned market. In today’s day and age, it
is veritably impossible to unseat a FAANG (Facebook, Apple, Amazon, Netflix,
Google) company from a market in which they already possess a the majority
user share, a core concept of modern platform economics4. Instead, the project is
dedicated to an entirely open-source development approach, free to use, modify,
and distribute, so long as it is not sold. Further description of the myriad
benefits of open source are beyond the scope of this manuscript, which seeks
to provide only a general technical introduction to the project as well as its
development process.

The project seeks to take advantage of the personal nature of the collected
information to further customize interactions. This addresses both the insta-
bility as well as the lack of privacy of a server-based model. Much of OSLO’s
architecture is based on relatively metaphysical arguments regarding cognition,
in an attempt to directly duplicate behaviors common in intelligent animals,
without waiting for them to arise from a neural network.5

3Scharon Harding Jun 10, 2022 4:19 pm UTC. (2022, June 10). Insteon
Smart Homes resurrected as abruptly as they were bricked. Ars Technica.
https://arstechnica.com/gadgets/2022/06/insteon-smart-homes-resurrected-as-abruptly-
as-they-were-bricked/

4Colback, L. (2023, March 13). The rise of the platform economy. Financial Times.
https://www.ft.com/content/e5f5e5b9-3aec-439a-b917-7267a08d320f

5It is important to note OSLO pre-dates current large language models
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2 Architecture: Introduction

OSLO is a ’human-in-the-loop’ system written in primarily in Python3, although
certain features were implemented in C++ or Rust. ’Human-in-the-loop’ does
not refer to the eponymous loop, but rather refers to the a system which uses
human feedback as an integral step in its execution. This feedback comes during
runtime rather than afterwards or beforehand, as is common with other forms
of machine learning.

2.1 A ”Loop”

For the purposes of this manuscript, a ’loop’ is defined as a repetitive process
within a heterarchical system. Loops take the form of generators, taking an
input and transform it. Generators effectively ’pause’ execution, allowing a
model to be loaded into memory and kept there, and then called from anywhere
within appropriate scope.

#example loop

def load_model():

model = library.load("model_name")

return(model)

def conversion(input, model):

o = model.inference(input)

return(o)

def example_loop():

model = load_model()

yield(True)

while(True):

#loop input

val = yield

if(val is not None):

pred = conversion(val, model)

#loop output

yield(pred)

else:

pass

exg = example_gen()

genImp = True

while(True):

flush = next(exg)

genOut = exg.send(genImp)

See the generator implemented above as an example. An input may be unstruc-
tured data for which the output is a parse-able format, or structured data, for
which the output is an inference or transformation of said data.

4



A key benefit of this approach is the flexibility afforded in data ingress and
egress. Data may enter the system at any point in its execution, for example,
audio enters only through a loop dedicated to audio processing, which in the
system-wide loop, comes before text processing. Textual data which could take
the form of something like a webpage, SMS, or API response enters in the
text loop, later in the execution of the system-wide loop. Different modalities
may pass through sets of loops prior to the system-wide loop until they are
standardized and continue alongside other information, which may stem from
any other input modality.

3 Executive Loop: Decision-making, executive
function

3.1 Causal Model

In Relativity Theory and Time Perception: Single or Multiple Clocks? Buhusi
and Meck posit that in rats, the neurobiological basis of the temporal perception
is not that of a single continuous scale on which things are ordered, but rather
relative via several different clocks of varying lengths. [BM09]

Hume’s definition of causality presented in A Treatise On Human Nature
[Hum78] states that a cause and effect must be ”contiguous in space and time”,
”the cause must be prior to the effect”, and the ”same cause always produces the
same effect, and the same effect never arises but from the same cause”, among
other things. These laws, while substantive as a basis for causality in some
circumstances, are not universally true as they imply a deterministic, constant,
singular outcome from any specific action. For the purpose of this model Hume’s
laws permit a few assumptions to be made.

1. Cause precedes effect → The graph must contain information about the
order in which states occurred. This is obtainable through a directed graph.

2. Cause must be contiguous to effect → Assuming that any arbitrary state
Sa can lead to any other arbitrary state Sb, the graph must be well connected.

3. The same cause always produces the same effect → It is bad practice to
set any probability to 0 as would be implied by ’always’. A weight representing
the probability of state transition should be appended to each edge in the graph.

3.1.1 Core Principle

Assume a traditional finite Markov chain1 with state space Ω and transition
matrix P of size |Ω| × |Ω| which utilizes discrete time steps; t, t + 1, ..., t + n,
where n ∈ ZZ, and Pij represents the probability that, given Xt = Ωi, Xt+1 = Ωj

ie,
Pr(Xt+1 = Ωj |Xt = Ωi)

1Further reading & better definition: https://math.uchicago.edu/ may/REU2017/REUPapers/Freedman.pdf
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We attempt to construct a causal model which applies neurobiological con-
cepts from Buhusi & Meck’s paper. We define four constants:

s = 10

m = 60

l = 3600

o = 43200

which represent, in seconds, the time windows for four clocks, short, medium,
long, and extra-long, and another variable, T ′, which represents the actual clock
time elapsed between state changes. T now iterates only when a new state
is entered. While the agent idles in any given state, variable T ′ increments
independently of T .

Assume a new Markov chain with state space Ω and transition matrix P of
size |Ω| × |Ω| × 4. Pijk now represents the probabilities,

k = 1, P r(Xt+1 = Ωj ∩ t′ ≤ s|Xt = Ωi)

k = 2, P r(Xt+1 = Ωj ∩ t′ ≤ m|Xt = Ωi)

k = 3, P r(Xt+1 = Ωj ∩ t′ ≤ l|Xt = Ωi)

k = 3, P r(Xt+1 = Ωj ∩ t′ ≤ o|Xt = Ωi)

With no data available, at t′ = 0 and t = 0

P (., ., s), P (., .,m), P (., ., l), P (., ., o) =
1

|Ω| × 4

so that
ΣPi,.,. = 1.0

During run-time the agent is able to update the transition matrix as new data
becomes available. Given a corpus of historical state transfers C, and a given
transfer c with c0 being the initial state, c1 being the new state, and ct′ being
the time elapsed,

Pij =
|c0 = i ∩ c1 = j ∩ ct′ ∈ k|

|{c′ ∈ C|c′0 = i|}
The matrix remains irreducible and finite with both row and column sums of 1.

3.1.2 States & State Objects

A state takes one of three forms:
1. Action State: OSLO may trigger an action state internally through utiliz-

ing an ’action’, a function within its action library. Examples of actions include
toggling lights, retrieving online information, like the weather or a calendar, or
controlling other connected endpoints.
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2. Stimulus State: A stimulus state may not be triggered. It occurs when
a continuously monitored input source fulfills a condition. For example, the
iCloud extension reports your phone battery percentage is below 10 percent.

3. Reward State: A reward state may not be triggered, but it occurs when
the agent accomplishes a programmatically specified reward, like providing a
high confidence answer to a question.

Awareness of one’s impact on their environment is a developmental stage
in human cognition, outlined in The Development of Body Self-Awareness by
Moore et al. [Moo+07] OSLO’s division between actions & stimuli allows prob-
abilistic reasoning of not only what may happen, but what can happen if OSLO
interacts with the environment in a specific manner. This of course does not
constitute self-awareness, but is designed to mimic this element of cognitive
development.

States may possess typed parameters for use with propositional calculus
(see 5.9). The action state getWeather possesses a location typed parameter,
requiring an input tagged by the named entity recognizer as a LOC.

3.1.3 Causal ’Pointers’

The causal pointer is the programmatic means by which t′ is recorded. Upon
entering a state, the pointer begins to count upwards, disqualifying any expired
time frames. All pointers are stored in a queue.

3.1.4 Reward States, Drive Values

A reward state is a state which may be triggered to indicate the agent has
accomplished a goal. For each reward state, there is a ’drive’ value, which
degrades continuously with each passage through the main loop. These states
may be programmatically specified, for example, the threshold which specifies
when the ’curiosity’2 routine kicks in. A reward state may not be an action
state or a stimulus state.

4 Audio Loop: Audio

4.1 Recording

The Python3 library SoundDevice handles both device selection and sampling.
Recording is done on a specified device or the first available compatible input
device from a list of available audio devices. A block-size of 8000 is utilized with
a sixteen bit integer representation. The sample rate is set to the default sample
rate of the selected input device. Recording is done within a ’loop’, passing an
audio sample of the desired size to components responsible for processing and
storage.

2OSLO retrieves the Wikipedia article for a noun chunk with few semantic web connections,
or, a random noun chunk
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4.2 Storage

Audio is stored using the .h5 file format. Otherwise, the specifics of storage are
mundane.

4.3 Processing

Vosk, the speech processing toolkit, is used for the speech to text task and the
embedding portion of the speaker resolution task.

4.3.1 Speech to Text

The tested speech to text model, vosk − model − en − us − 0.22, has a mean
word-error-rate of 5.69, although accuracy often significantly worsened in loud
settings, when parsing with heavily accented speech, or handling multiple con-
current speakers. Accuracy either improved or remained faithful to the reported
mean word-error-rate when a single unaccented speaker enunciated clearly, es-
pecially into a high quality microphone with third party audio filtering software
(such as the defunct/compromised ’NoiseTorch’ library) enabled.

4.3.2 Speaker Resolution

This task consists of partitioning the speaker embedding dataset into k clusters,
where k is determined by the following methods.

It can be solved comprehensively, which is run when OSLO is not in use:

Let X be the set of all embedding vectors {x0, x1, ...}, where any given em-
bedding vector xq has a fixed length determined by the model used.

We assume that there is an underlying multivariate Gaussian distribution,
defined as:

p(x, µ,Σ) = N(µ,Σ) = (2π)−(D
2 )exp(−1

2
(x− µ)TΣ−1(x− µ)

For which a multivariate Gaussian mixture model, defined below, can be fit:

N(µk,Σk) = ΣK
k=1πkN(x|µk,Σk)

The posterior distribution, the likelihood a particular embedding has been
generated by component k, in this case, speaker k:

p(zk = 1|k) = πkN(x|µk, θk)

ΣK
f=1πfN(x|µf , θf )

The Bayes information criterion (BIC) and Akaike information criterion
(AIC) are defined as follows:

AIC = −2ln(L0(K) + 2k +
2k(k + 1)

(N − k − 1)
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BIC = 2ln[(L0(K)] + kln(N)

AIC & BIC may be applied to the Gaussian mixture model fit to X with K
components, providingAICK andBICK , throughAICK = AIC(GMM(X,K)),
and BICK = BIC(GMM(X,K))
Using these assumptions,

I : 2, ..., |X|

mAIC = minindex({∀i ∈ I|AIC(GMM(X, i))})

mBIC = minindex({∀i ∈ I|BIC(GMM(X, i))})

mAIC and mBIC represent the K components at which the fit Gaussian
mixture model has the minimum Bayes information criterion (BIC) and Akaike
information criterion (AIC). These minimums can be averaged:

K̂ = ⌊mAIC +mBIC

2
⌋

Giving K̂ components, in other terms, the K̂ speakers. Using GMM(X, K̂),
the posterior distribution provides likelihood a sample belongs to speaker S.

Assuming X was of row-size A and column-size B, create X̂ of new size A,
B, K̂, where X̂i,j is of K̂ length, with index X̂i,j,s representing the probability
Xi,j belongs to speaker s.

As samples are added to X, it is necessary to update X̂, so the current step
X̂T is updated at X̂T+1, and so on, but this should be done while maintaining
the profiles calculated in a previous iteration. It is safe to assume the number
of speakers, K̂, over time is a monotonically increasing function. For the first
[0, |X̂T+1| − |X̂T |] points, there are now two sets of probabilities. For speaker s
who has likely spoken Ys ∈ X̂, point membership can be mapped to a new Y ′

s

from based on a comparison between X̂T and X̂T+1

The task can also be solved quickly3, which is done when OSLO is actively
in use:

SSE = Σn
i=1(yi − f(xi))

2

kmin = 2, kmax = |PCA(XT )|

V = [kmin, kmax]

E = {0, ..., 0}, |E| = kmax

∀i ∈ V , use a K Means clustering Ŷ = kMeans(X, i), where the points
belonging to cluster c are Ŷc, and calculating the sum of squared errors accord-
ingly.

3https://gist.github.com/rpgove/0060ff3b656618e9136b
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E[i] = E[i] + Σ
|Ŷc|
p=0Ŷc,p −

Σ
|Ȳc|
f=0Yc,f

|Ȳc|

2

Then, find ek ∈ E, such that the following is maximized

Σk
i=1

√
(ei − ei−1)2

|k
−

Σ
|E|
i=k

√
(ei − ei−1)2

|E| − k

k is the new number of clusters, permitting kMeans(X, k) for for point-
speaker assignment, and classification in later iterations similarly

5 Natural Language Processing & Understand-
ing

5.1 Ingress Points

All information OSLO encounters, whether it originates externally or internally,
is converted into a natural language representation and fed into the language
loop, providing a facsimile of a ’language of thought’. For example, the activa-
tion of State Sx is fed to the language processing loop as Speaker : Profile0 ,
Text : ”I am currently entering state Sx”, and an audio transcription matched
to speaker i is fed to the loop as Speaker : Profilei Text : < spokentext >

Currently implemented external-origin ingress points include:
- SMS/MMS, via SMTP Gateways (@vtext.com, @txt.att.net, etc)
- Audio transcriptions
- Email, via SMTP
- Web sources, including Wikipedia
- API calls

Currently implemented internal-origin ingress points include:
- State activation
- Output from routinely called libraries (weather, traffic, etc)
- Output from routinely scheduled Wikipedia queries of known entities

5.2 Classification

5.3 Frames

The concept of frames is drawn directly from Marvin Minsky’s ”A Framework
For Representing Knowledge” [97]

Oslo’s text frames possess the following attributes: type, sentiment-vector,
plain-text, entities, tokens, chunks, speaker, tense
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5.3.1 Negation, Sentiment

Contemporary voice assistants are remarkably poor at parsing negation.6 While
methodology to test this is limited, as there are no true development versions of
consumer voice assistants such as Siri or Alexa, anecdotal evidence suggests a
query like ”Do NOT turn off the lights” results in nearly any assistant turning
the lights off.

The current architecture of these assistants is not public, but this is likely due
to methodologies employed for intent matching which disregard the structure of
the sentence and create embeddings that provide probabilistic membership in
an intent-locale. Content wise, ”Do NOT turn off the lights” and ”Do turn off
the lights” are nearly identical, except for three characters which could occur at
any point in a sentence. Consider ”Do turn NOT off the lights”. This garners a
new meaning, set the lights to the negation of ”off”, ie ”on”. The third request,
albeit contrived, has an entirely separate intent from the first two. It would be
difficult to encode this difference in an embedding space.

Sentiment is typically classified as ’positive’ or ’negative’ by way of embed-
dings as well, as discussed by Tang et al. in the widely cited Learning Sentiment-
Specific Word Embedding for Twitter Sentiment Classification. [Tan+14] While
not as immediately apparent to the user of a VA (voice assistant) such as Siri,
the limitation of this methodology has ramifications for more complex assistants
in the future. As such, it would be appropriate to apply any solution to the
negation problem to sentiment.

The proposed solution is to create a representation in which sentence struc-
ture and content are inherent, while maintaining the advantages offered through
a metric space: a means by which to define a distance function.7

5.4 Semantic Web

The semantic web comprises of two directed graphs, G0, G1, which utilize the
equivalent and thus equal sets of nodes but different edge sets; traces and edges.
Let the graph constructed by the set of semantic edges, denoted as E0 be G0,
and the graph constructed by the set of semantic traces, denoted as E1, be G1.
Additionally, E0 possesses a set of weights, W0

G0 = (V0, E0,W0)

G1 = (V1, E1)

V0 ⇐⇒ V1

The semantic web, in less technical terms, is intended to form a non-hierarchical
network of mixed types with a shifting topology, depending on which set of

6Edit: This concept was separately researched and publicized later;
https://www.quantamagazine.org/ai-like-chatgpt-are-no-good-at-not-20230512/

7See ’Root Embedding Space’
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edges is utilized. 4 It would be accurate to claim the semantic web is a form of
knowledge graph.

5.4.1 Semantic Edges

The semantic edge tracks the current summation of the sentiment, the nega-
tion float denoting the presence of a prior negation, the type of edge, and a
weight. Take a sentence S with words w0, w1, ..., wn ∈ S, and a function P
where P (wi) = [0, 1]. The overall sentiment of the sentence is equal to

Σ
|S|
i (P (wi))

, although by using a dependency parse tree, one can isolate sentiment on a local
level within the sentence, identifying it as it specifically pertains to a subject or
object - summing all leaf nodes attached to a particular node in the tree.

5.4.2 Semantic Traces

The semantic trace is an object that has two x and y values, one for each x, y
pair of the nodes it connects. This is a secondary graph that does not account
for chronological order, rather context. Traces connect common lemmas, enti-
ties, and profiles through the web. A given trace permits access to the most
immediate previous use of the node, and if it exists, the use of the node which
follows.

5.4.3 Semantic Vectors

The semantic vector, alone, is equivalent to a linguistic ’sentence level’ semantic
representation. That is to say, it exists independently and takes on whatever
semantic content it possesses inherently, not one that may be lent by context or
idiomatic use. Any given vector within the web, denoted as ⃗SVx, can be defined
as follows: ⃗SVx = (n0, n1, ..., ni), where i is the sentence length, and nq is the
lemma found at index q in the sentence, stored in the form of a semantic node.

Semantic vectors could be of any length, although length is bound during
frame creation. Beyond this representation, the semantic vector object (within
the code base) preserves meta-data about the sentence itself for later retrieval.
It records the time it was initialized, the speaker, the type of sentence, the track
(a list consisting of node and edge objects), and the original plain-text of the
sentence. In this capacity, it is serving as the long term storage of a frame in
addition to the means by which a graph representation is created.

The semantic vector object is marked as complete by a ”noid” (corruption
of void and node), which is simply a node containing no text, signalling any
current semantic edges be completed.

4Further reading on similar philosophical concepts may include Deleuze and Guattari’s
concept of the ’rhizome’, introduced in A Thousand Plateaus
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5.4.4 Semantic Nodes

The semantic node object is the representation of a single word on the graph. It
tracks inbound and outbound edges, possesses x and y coordinates, the plain-
text, tokens, and hash.

5.5 Profiles, Entity Identity

Profiles are one of several methods employed to give OSLO a better under-
standing of ’utterance level’ meaning, specifically in terms of the resolution of
individuals, be they speakers or non-speakers, to relevant information or context
surrounding those individuals at any point in processing.

5.6 Temporal Context

Temporal context additionally assists in creating ’utterance level’ meaning. Ver-
nacular English uses time in a remarkably relative and abstract manner, making
the resolution of specific times a challenging problem. This task merited its own
dedicated module within the architecture, deemed moment, which takes as an
input a text frame. Convertible ordinals tagged during entity recognition such
as first, second, are immediately converted into numerical counterparts: ”first”
to ”1st”, etc. Other sections of the input frame are passed to the Python3
library word2number which uses a try-catch statement to attempt to parse it
into numerical form.

5.7 Question Answering

Roberta-base-squad is used in conjunction with a pipeline provided by the Python3
library transformers.

5.8 Root Embedding Space

The root embedding space was designed as a means to provide the benefits of
a sentence-level embedding space while retaining a greater deal of information
in regards to sentence structure, as opposed to exclusively the content of the
sentence. There are two methods being explored currently: relative and static.
The popular and creatively named thesaurus website: www.thesaurus.com was
scraped to construct a graph wherein each term is a vertex and each synonymy
relationship is an edge. Antonymy was also scraped incidentally. From here on
out the synonymy graph will be referred to as G.

Three 2-dimensional planes are created; Psubject, Pobject, Proot

The geodesic distance between any two words word0, word1, where both
is defined as D(word0, word1). By measuring the distance between only the
respective subject, root, and object of a sentence of two sentences, sentences of
any length may be compared with one another so long as they are sufficiently
formed.
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5.9 Propositional Calculus

For example, the state ‘bookMeeting’ may have two parameters, a and b. Pa-
rameter a is of type text, and it is the meeting description. Parameter b is
of type time, and it is the time which the meeting occurs. Applying the state
‘bookMeeting’ is only applicable to a given sentence if the sentence frame con-
tains these kinds of entities.

As some states have no parameters, and some states have identical parame-
ters, this propositional calculus has low efficacy. [Lu+21]

5.10 Further Work

Further research includes applying machine translation to the task of converting
natural language into the propositional calculus, allowing statements to be bet-
ter analyzed. This is not intended as a comprehensive or absolute translation,
the author understands that a bijection between the English language and a
propositional calculus or formal system is impossible. However, an imperfect
or inconsistent translation will still allow a degree of verifiable reasoning, ulti-
mately exceeding the state-of-the-art LLM reasoning which is famously a ’black
box’.
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