
A Comparison of Methods Employed During AIMO 2024 Competition

Aidan Gomez Lucas Neves
Boston University

Introduction
Our goal was to build a LLM-based system capable of solv-
ing novel math word problems with high accuracy and relia-
bility. Our methods included leveraging a variety of prompt-
ing paradigms in an attempt improve the accuracy and con-
sistency of answers. We also pursued fine-tuning models on
externally sourced math datasets containing similar samples
which were roughly within the difficulty range of the AIMO
competition, namely highschool level geometry, arithmetic,
and algebra.

Core assumptions of problem set
We made a several assumptions about the competition hid-
den set (which functions as a test set) based on the compe-
tition outline and description, as well as the public training
set questions:

• The hidden public LB questions are in the same distribu-
tion as the final private LB questions

• The training set questions are representative of the hid-
den question distribution

• The questions are primarily high-school level algebra and
geometry questions

• The questions are able to be solved

Methods
We utilized a variety of different prompting strategies
and system level approaches to improve the consistency
and accuracy of the model. These methods included:
self-reflection, wherein the AI assesses its own thinking;
self-consistency, which consists of repeated prompting with
slight variations, finally taking the most often generated
solution; Chain-of-Thought prompting, which leads the
model to break down problems step-by-step. We also
employed tools like the Sympy library in Python for com-
plex calculations and Retrieval-Augmented-Generation to
utilize past knowledge and guide the model to generate
solutions based on similar known problems. Upon cursory
examination of the AIMO task description, our immediate
action was to acquire novel data not yet publicly available in
any AIMO-related dataset. A large quantity of high quality
data has proven to be a kingmaking factor in large language
model based methods, due to its use in finetuning as well as

its utility for testing our solutions across a more robust dis-
tribution of samples. Ultimately the search yielded the LILA
Math Reasoning dataset (Mishra et al. 2023), which features
problems, answers, and corresponding Python3 scripts
which produced the solution. The data was then cleaned
and formatted for our use. After examining popular models
and drafting a list of eligible ones, we elected to begin by
finetuning a quantized version of DeepSeekMath-7B-Base
on the LILA dataset. This was done for a maximum of
39, 000 timesteps with a batch size of 2, however, not only
was the accuracy of the quantized finetuned model worse,
it also ran at a much slower speed (see our discussion of
BFloat16 below) The finetuning process consumed a great
deal of time and computational resources. In an attempt to
recoup, we shifted to faster methods which might increase
performance, namely an agent-based approach and chain-
of-thought reasoning. Furthermore, we reproduced Deeply
Understanding Problems (Zhong et al. 2024), which were
shown to aid GPT3-5 in obtaining 97% on the GSM8K,
a popular arithmetic focused benchmark. Concurrently,
we implemented Retrieval Augmented Generation, which
entails providing the model with a similar but solved
example problem. We additionally tested the performance
of a number of models (see Benchmarks) against the LILA
dataset to gain further understanding of their individual
performances. Our final approach involved blending all of
these sans finetuning in a single implementation, randomly
selecting a prompting paradigm or including retrieval
augmented generation on each turn, taking 17 turns per
problem.

Model selection
When selecting our base model we considered a few differ-
ent 7B sizes models such as Mistral, Gemma, WizardMath,
and DeepSeekMath. Of these models in our initial evalu-
ation, DeepseekMath achieved the highest scores, and so
was selected as our base model. The model selection choice
was corroborated by public notebooks in the competition,
many of which also gravitated towards DeepSeekMath as
the highest performing base model for this competition. This
is likely due to DeepSeekMath publicly outscoring all con-
temporary models of a similar or larger size in GSM8K and
MATH benchmark datasets (Shao et al. 2024) that did not vi-



olate the February 23rd cutoff date. The list of models tested,
as well as their performance, can be seen in Benchmark Out-
comes.

Prompting methods
Self-consistency
In order to improve the stability of the answers the LLM
model provided, we used self-consistency with a repetition
iteration count of 17. Each iteration had a uniform random
chance of selecting one of four prompt variations. The high-
est counted repeated answer was taken as the final answer
of that question. The choice of 17 iterations was selected as
this was the highest iteration count that would still complete
within the required runtime, and provided the most stable re-
sults. Going above this resulted in occasional timeouts, and
values lower than this led to worse accuracy.

Retrieval Augmented Generation
To improve the reasoning of our system, we integrated Re-
trieval Augmented Generation (RAG) into our prompting
system. The idea being that we can prompt the model with
known math questions and step-by-step answers that are
similar to the one provided to guide the model in its ap-
proach. For our RAG database we combined the Math QSA
dataset, a Kaggle dataset of 5k math questions and answers
with chain-of-thought solutions in algebra, pre-algebra, and
geometry, along with the LILA dataset(Mishra et al. 2022),
which also includes python tool-use solutions for the cate-
gory of problems being evaluated in the competition. In to-
tal, our RAG dataset comprised 122k questions and answer
solutions both as chain-of-thought, as well as code solutions.
To perform Retrieval on the RAG dataset, we tokenized all
questions using the SentenceTranformer huggingface library
and the all-MiniLM-L6-v2 transformer model. these tokens
and models were then fed into the FAISS similarity search li-
brary, and for each new questions received, we would query
FAISS to return the top-1 most similar question-and-answer
from the RAG dataset.

Prompting with Chain of thought
In the original DeepSeekMath paper, (Shao et al. 2024) the
authors noted that the model was specifically structured to
take advantage of Chain Of Thought (CoT) prompting, pro-
viding an example CoT that was recommended to be used:

{question}\n Please reason step by
step, and put your final answer
within \boxed{}.

Unfortunately, we found that this prompt did not perform
well on the competition dataset. Using a community devel-
oped chain of thought prompt as basis, we modified it into a
staging style prompt, where we ask the model to break down
the problem into multiple ”steps” facilitating the CoT flow
and improving response stability.

Deeply Understanding the Problem
In Achieving > 97% on GSM8K: Deeply Understanding the
Problems Makes LLMs Better Solvers for Math Word Prob-
lems, Zhong et al. (Zhong et al. 2024) claim that chain-of-
thought prompting falls short when confronted with a ne-
cessity for mathematical reasoning due to a high frequency

of calculation errors (i.e, 2 + 2 = 5 etc.), non-committal
approach to the following steps, and misunderstanding the
problem. In turn, they propose ”Deeply Understanding the
Problem” prompting, abbreviated as DUP. DUP is best sum-
marized as forcing the model to engage in a multi-stage ap-
proach to the problem. Rather than only being asked to solve
a problem, the model instead iteratively tackles subproblems
one-by-one. In their paper, Zhong et al. provide the question
alongside three successive prompt stages;

1. Core Question: "Please extract
the core question, only the most
comprehensive and detailed one!"

2. Key Information: "Please extract
the question-solving information
related to the problem"

3. Generate and Extract the Answer:
"Please understand the Hint and
question information, then solve
the question step by step and show
the answer"

Zhong et al. implemented this technique for GPT-3.5 and
applied it to six major mathematical datasets, including
GSM8K. To provide points of comparison, they tested
it alongside Zero-shot chain-of-thought, least-to-most, and
plan-and-solve. DUP offered a mean performance improve-
ment of 3.2 percent over zero-shot chain-of-thought, our pre-
vious methodology. DUP was modified to possess the fol-
lowing stages.

1. Summarize the problem as a list
of short subproblems,
2. Determine the information you
will need in each subproblem.,
3. Write a Python script using
Sympy for to solve the problem.

In this configuration, the model was called three successive
times. Unfortunately upon submission it was evident that the
time increase that came about as a result was incompatible
with the constraints of the competition. To reduce the time
taken to solve one problem, the prompt was flattened into a
single call.

Self reflection
To improve the result of each individual iteration of self-
consistency, we also implemented a self-reflection pass
where the models answer was fed back to it and it was asked
to check it over. More often than not the model would de-
clare that the prior answer was correct, even when it was
not. One tangible benefit was that even though the model
would often not actually self-reflect, it did restate its solu-
tion, making easier to properly parse the LLM’s answer for
submission.

Dueling ’Idiots’
As mentioned, DeepSeekMathRL frequently flatly re-
fused to re-do problems. In order to encourage self-



reflection, we introduce a prompt-engineering technique re-
ferred to as ’Dueling Idiots’ - a manufactured adversarial
situation. In the best performing public notebook (see run
0.2), the model is instructed to explain generated Python
code simply enough for an ’idiot’ to understand it. Taking
this as inspiration, we created a prompt in which the model
was first instructed to solve the problem in a staging style
approach wherein the problem is decomposed to constituent
sub-problems, key information is identified, and then a solu-
tion is drafted which it would then check. The novel compo-
nent is the ’duel of the idiots’ - after the initial four staging
phases, the prompt was changed from direct instruction to
the model qua addressing it as the author of the previous
stages to a ’duel’, an adversarial situation in which the pre-
viously model generated text was framed as originating with
the user rather than the agent.

Furthering this approach, the model was then instructed to
”Correct the work, which was done by an idiot”. Appending
this coarse and insulting phraseology resulted in dramatic
increases in the frequency of successful self-reflection.

Agent methods

Agent-style approaches wrap large language models in a
schema which facilitates tool-use and environmental aware-
ness. Langchain, a library which provides large language
models with the necessary agent accoutrements, was tested
alongside Deepseek-7B-Base and Deepseek-7B-Instruct.
Langchain provides a convenient format that permits mod-
els to make use of a Python REPL, calculator, and custom
tools that seemed ideal for the core task presented in the
AIMO challenge. Unfortunately, the documentation proved
to be inconsistent and addressing the requirements of the li-
brary were siphoning development time away from the core
task and towards features already implemented in core note-
books, such as the use of the Python REPL. Due to this
as well as less-than-impressive performance, Langchain and
similar agent-based approaches were shelved in favor of
working within the format already provided.

Tool use

Since LLM models are not very stable at doing basic math,
we leveraged tool use, having the model instead generate
code that performs the required math operations. for this we
instructed the model to use python and the Sympy library, to
facilitate solving symbolic math algebra problems. the run-
time looks for ”python” keywords, and iteratively builds out
the python script to be executed. Any errors or results from
the code execution is then fed back into the model, where
it may either correct the code and re-attempt to execute, or
continue, taking the results of the prior computation into
its solution. While this approach does improve the success
rate of the system, some questions are not well structured
for this type of tool use, so this method was integrated and
used alongside non-tool use prompting, and leveraged dur-
ing self-consistency passes, where the results of both tool-
use and non-tool-use prompting is compared for stable, re-
peated responses.

Runtime considerations

With the additions of Self-reflection and Self-consistency,
our runtime-per-question increased significantly, as each
question now required many iterations through the language
model to arrive to a solution. This began to lead to occa-
sional timeout problems as the total runtime began to ex-
ceed the allotted nine hour maximum. to alleviate this, we
explored using datatypes that had better hardware acceler-
ation on kaggle, namely IEEE Float16 datatype instead of
the default BFloat16 format used in the model. This was se-
lected as the Kaggle hardware (Nvidia Tesla T4x2) is too
old to have native BFloat16 (BrainFloat16) support, but does
have native FP16 matrix math acceleration support. While
this change did improve runtime and eliminate the notebook
timeout issues, it came at a reduction in scoring quality, so
this was reverted to BFloat16. In another approach to reduce
runtime, we attempted to convert our runtime code from us-
ing the huggingface Transformers library to use vLLM in-
stead, which offers much faster inference throughput, on the
order of 10x, due to being purpose built for model serving
and inference. The objective of switching to the vLLM run-
time would be that we would be able to increase the num-
ber of self-consistency trials executed per question and im-
plement more processing per question. Unfortunately this
proved complicated to set up as installer packages needed
to be pre-downloaded and setup at notebook runtime when
scoring, and lead to late-in-run out of memory errors and
runtime exceptions, and so was abandoned. In the end for
runtime management, the maximum token generation per
question was lowered slightly to keep overall runtime below
timeout threshold.

Fine Tuning

Selection of Data
In order to gain the benefit of a more diverse finetuning
dataset, the LILA Unified Math Reasoning dataset was se-
lected for use in finetuning. The LILA dataset contains ques-
tions related to arithmetic, calculus, algebra, and reason-
ing alongside Python3 implementations and the correspond-
ing solutions. (Mishra et al. 2022) After manually prun-
ing files containing irrelevant or excessively long questions,
the modified dataset contained 118,033 rows with as many
{Question,Code,Answer} pairs.

Challenges

Notebook timeouts

With the self-consistency and self-reflection passes, our
runtime-per-question was frequently coming up against
the competition limit of 9 hours, and so finding the
right balance between consistency iterations, total token
length generation per question, datatype, and runtime
was a time consuming iterative process, made more
difficult as the real runtimes per submissions were ob-
fuscated and we could only make two attempts per day.



Lack of Computational Resources
One challenge we encountered when fine tuning the model
was limited computing resources for training. This lead to
a very slow iteration cycle for fine-tuning, and ultimately
led to fine-tuning being a non-viable approach for us. Our
computing resources were limited to Colab A100 instances,
which have no guaranteed availability and a 12 hour time
cap, and so would often quit before training completed.
In addition to Colab hosted systems, we also had a single
24GB VRAM local GPU that while capable of training the
model, did so much slower than an A100. These challenges
in fine tuning led to us being unable to properly iterate and
test fine-tuned models and adjust our datasets and data pre-
processing in a timely manner.

DeepSeekMath brittleness to small changes to
prompting/seed/temperature
We noticed that doing simple randomness changes such as
selecting a different seed or making small adjustments to
the temperature would lead to vastly worse scoring perfor-
mance, and that there was a large variability in run-to-run
scoring, with the same code scoring anywhere from 16-20
simply by re-running with no changes. This made it some-
what challenging to determine what changes were helping
vs hurting scoring, as some improved run-to-run stability,
but did not necessarily achieve a ”lucky” high scoring solu-
tion set. Due to the limited number of daily submissions, it
was not feasible to average the scores of a notebook in or-
der to determine mean performance. Instead, we opted for
significant architecture changes each iteration as opposed to
tuning hyper-parameters in an iterative fashion.

Benchmark Outcomes
Different models and methods were bench-marked on the
LILA dataset. This tests RAG in the absolute optimal cir-
cumstance - assuming the test problems being asked are of
extremely high relevance to the problems stored in the em-
bedding dataset.
100 randomly sampled problems from the audited LILA
dataset were fed to the models. This included a percent-
age (20%) questions were not answerable within the schema
provided to the model (non-integer answers), but nonethe-
less featured lines of reasoning that were desirable for the
model to be able to emulate, and thus were retained in our
dataset for the sake of fine-tuning. The temperature was
fixed to 0.9.

Model Name DUP CoT CoT+RAG
DeepSeekMath
7B RL 24% 1% 41%

DeepSeekMath
7B Instruct 29% 7% 38%

DeepSeekMath
7B Base - - 9%

yunconglong
13B-MOE 1% - -

WizardMath
7Bv1.1 - 4% -

Results
With these changes, our highest scoring competition result
was 20/50 questions correct, for a ranking of #603 on the
public leaderboard.

Conclusions
Our results indicate a limited potential for reproducibil-
ity and/or generalization in regards to several of our cited
sources. The DUP prompting introduced by Zhong et al.
(Zhong et al. 2024) did not reliably result in the touted per-
formance increases when applied to the LILA dataset - at
least not to the degree claimed in the paper.

CoT + RAG offered the highest performance on our test
data. However, this was in the optimal scenario. In terms
of generalization to entirely novel data, DeepSeekMath-7B-
Instruct combined with DUP prompting scored the highest,
at 29%. Generally Instruct & RL models were both more
accurate and, anecdotally, faster to complete problems.

A large source of testing error came from being unable to
parse the correct answer from the model-generated text, as
it was often construed, formatted incorrectly, or not given in
the manner ’asked’ of it. Given more time and computational
resources, the authors would be interested in implementing a
more versatile agent with reliable tool-use, potentially fine-
tuning a 13-billion parameter model.

References
Mishra, S.; Finlayson, M.; Lu, P.; Tang, L.; Welleck, S.;
Baral, C.; Rajpurohit, T.; Tafjord, O.; Sabharwal, A.; Clark,
P.; and Kalyan, A. 2022. Lila: A Unified Benchmark for
Mathematical Reasoning. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP).
Mishra, S.; Finlayson, M.; Lu, P.; Tang, L.; Welleck, S.;
Baral, C.; Rajpurohit, T.; Tafjord, O.; Sabharwal, A.; Clark,
P.; and Kalyan, A. 2023. Lila: A Unified Benchmark for
Mathematical Reasoning. arXiv:2210.17517.
Shao, Z.; Wang, P.; Zhu, Q.; Xu, R.; Song, J.; Bi, X.;
Zhang, H.; Zhang, M.; Li, Y. K.; Wu, Y.; and Guo, D. 2024.
DeepSeekMath: Pushing the Limits of Mathematical Rea-
soning in Open Language Models. arXiv:2402.03300.
Wang, X.; Wei, J.; Schuurmans, D.; Le, Q. V.; Chi, E. H.;
Narang, S.; Chowdhery, A.; and Zhou, D. 2023. Self-
Consistency Improves Chain of Thought Reasoning in Lan-
guage Models. In The Eleventh International Conference on
Learning Representations.
Zhong, Q.; Wang, K.; Xu, Z.; Liu, J.; Ding, L.; Du, B.; and
Tao, D. 2024. Achieving¿ 97% on GSM8K: Deeply Un-
derstanding the Problems Makes LLMs Perfect Reasoners.
arXiv preprint arXiv:2404.14963.


